Black friday

Economisez gros !

Tous les cours moins de 5 $ - pour un temps limité !
regarder maintenant
1 Etudiants
120 Leçons
Débutant

Ce que vous allez apprendre

  • Vous allez apprendre comment utiliser le langage R pour la science des données et l'apprentissage automatique
  • Vous allez avoir des astuces pratiques et des conseils sur votre carrière de data scientist
  • Vous aurez des exercices pratiques et examiner des cas d'études pour comprendre les fondamentaux du langage R
  • Vous allez pouvoir utiliser les fonctionnalités principales du langage R

Curriculum

22h 31m
Section 1: Faites la connaissance de votre instructeur
02:33
Section 2: Introduction à la science des données
56:59
Introduction au Data Scientist
12:31
Comment changer de carrière vers ML partie 1
14:56
Comment changer de carrière vers ML partie 2
03:31
Section 3: Aperçu de la structure de la formation
22:41
Aperçu de la structure de la formation
22:41
Section 4: Introduction au langage R
26:15
Introduction au langage R
15:07
Installer le langage R
11:08
Section 5: Programmation en R
55:14
Opérateur R
13:45
Langage R- Déclaration conditionnelle et boucle
12:02
Programmation en R - Fonction R #1
13:20
Programmation en R - Fonction R #2
10:10
Programmation en R - Fonction R #3
05:57
Section 6: Langage R structure des données
49:23
Introduction au Langage R structure des données + Vecteur
11:13
Matrice, tableau et cadre de données
14:37
Lecture profonde du cadre de données de R
13:02
Facteur
04:12
Structure des données en R - Liste
06:19
Section 7: Importer et Exporter dans R
32:16
Importer des données CSV dans R
09:26
Importer des données textes dans R
03:19
Importer des données Excel, web dans R
12:47
Exporter des données dans R - Texte
02:37
Exporter des données dans R - CSV & Excel
04:07
Section 8: Manipulation de données
1:33:49
Manipulation de données - Appliquer des fonctions
13:15
Manipulation de données - selectionner
11:46
Manipulation de données - muter
14:28
Manipulation de données - filtrer
14:11
Manipulation de données - arranger
09:38
Manipulation de données - Pipe Operateur
08:30
Manipulation de données - grouper par
11:26
Manipulation de données - Date
10:35
Section 9: Visualisation de données
2:10:04
Introduction à la Visualisation de données & Scatter Plot
12:01
Visualisation de données - mfrow
07:37
Visualisation de données - pch
12:30
Visualisation de données - Coleur
01:19
Visualisation de données - Charte linéaire
03:21
Visualisation de données - Bar Plot
07:05
Visualisation de données - Charte pie
06:43
Visualisation de données - Histogramme
07:06
Visualisation de données - Terrain de Densité
02:26
Visualisation de données - Terrain de boite
05:01
Visualisation de données - terrain en mosaique et Heat Map
07:59
Visualisation de données - 3D Plot
10:39
Correlation Plot et Word Cloud
09:02
Visualisation de données - ggplot2 Partie 1
14:03
Visualisation de données - ggplot2 Partie 2
08:08
Visualisation de données - ggplot2 Partie 3
15:04
Section 10: Introduction aux Statistiques
2:02:57
Introduction aux Statistiques Partie 1
13:25
Introduction aux Statistiques Partie 2
08:53
Introduction aux Statistiques partie 3
14:55
Introduction aux Statistiques partie 4
04:15
Introduction aux Statistiques partie 5
15:10
Introduction aux Statistiques partie 6
08:21
Introduction aux Statistiques partie 7
15:04
Introduction aux Statistiques partie 8
10:45
Introduction aux Statistiques partie 9
10:24
Introduction aux Statistiques partie 10
14:34
Introduction aux Statistiques partie 11
07:11
Section 11: Test d’hypothèse
41:58
Test d’hypothèse Partie 1
10:08
Test d’hypothèse Partie 2
11:28
Test d’hypothèse Partie 3
14:21
Test d’hypothèse Partie 4
06:01
Section 12: Test d’hypothèse en pratique
2:14:01
Test d’hypothèse en pratique partie 1
15:04
Test d’hypothèse en pratique partie 2
09:36
Test d’hypothèse en pratique partie 3
14:16
Test d’hypothèse en pratique partie 4
12:36
Test d’hypothèse en pratique partie 5
10:29
Test d’hypothèse en pratique partie 6
13:46
Chi Square Partie 1
11:19
Chi Square Partie 2
14:57
ANOVA Partie 1
12:30
ANOVA Partie 2
14:20
Ce dont on a parlé dans ce chapitre?
05:08
Section 13: Boite à outils apprentissage automatique
26:31
Boite à outils apprentissage automatique partie 1
14:00
Boite à outils apprentissage automatique partie 2
12:31
Section 14: Comprendre les Cas de business
12:51
Comprendre les Cas de business
12:51
Section 15: Le Data Pre-Processing
1:24:14
Le Data Pre-Processing partie 1
14:45
Le Data Pre-Processing partie 2
14:29
Le Data Pre-Processing partie 3
10:25
Le Data Pre-Processing partie 4
09:39
Le Data Pre-Processing partie 5
12:33
Le Data Pre-Processing partie 6
07:19
Le Data Pre-Processing partie 7
15:04
Section 16: Apprentissage supervisé : Régression
3:06:14
Régression linéaire partie 1
11:47
Régression linéaire partie 2
14:23
Régression linéaire partie 3
20:21
Régression linéaire partie 4
19:02
Régression linéaire partie 5
25:00
Régression linéaire partie 6
15:02
Régression linéaire partie 7 - Corrélation Partie 1
14:31
Régression linéaire partie 7 - Corrélation Partie 2
13:44
Régression linéaire partie 8 - Régression pas à pas
12:52
Régression linéaire partie 9 - Régression pas à pas
16:03
Régression linéaire partie 10 - Variable muette
12:34
Régression linéaire partie 11 - Non Linéaire
10:55
Section 17: Aperçu de la classification
13:29
Aperçu de la classification
13:29
Section 18: Régression logistique
1:11:26
Intuition de régression logistique
14:04
Code d'implémentation partie 1
05:09
Code d'implémentation partie 2
10:37
Évaluation de modèle
12:28
Telecom Churn Cas d'étude
22:27
Résumé
06:41
Section 19: Étude K-NN
40:13
K-NN Intuition
13:26
K-NN code d'implémentation du langage R
12:48
K-NN Cas d'étude
13:59
Section 20: Étude SVM
45:18
SVM - Intuition
08:44
SVM - code d'implémentation du langage R
08:22
SVM - Tuning de Modèle
09:00
SVM - cas d'étude télécom
07:56
SVM - Cas non séparables et avantages et inconvéniants
07:27
Résumé du chapitre SVM
03:49
Section 21: Naive Bayes
36:46
Naive Bayes - Intuition
19:56
Naive Bayes - code d'implémentation du langage R
08:25
Naive Bayes - Cas d'étude
08:25
Section 22: Arbre de décision
1:06:18
Intuition sur l'Arbre de décision
14:54
Arbre de décision-comment ça marche
07:40
Arbre de décision - code d'implémentation du langage R
13:44
Arbre de décision - Pruning
15:36
Arbre de décision - cas d'étude
14:24

Description

Prérequis

  • Aucune connaissance en particulier n'est requise
  • Le logiciel et les données dont vous avez besoin dans cette formation sera offerts gratuitement

A propos de l'instructeur

Les avis 2
Les étudiants 328
Les cours 4

Avis sur la plateforme BitDegree

Nos étudiants disent Excellent
9.5 sur 10
trustpilot logo 1 trustpilot logo